troponeimine ring with bond alterations consistent with the following tautomer:

The amino proton on $N(1)$ is intramolecularly hydrogen bonded to the imino nitrogen atom $\mathrm{N}(2)$, the $(\mathrm{N} 1) \mathrm{H} \cdots \mathrm{N}(2)$ distance and $\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~N}) \cdots \mathrm{N}(2)$ angle being 1.98 (4) \AA and $116(3)^{\circ}$, respectively (Fig. 1). These results may be contrasted with those reported previously for the structure determination of 1-methylamino-7-methylimino-1,3,5-cycloheptatriene, in which C_{2} symmetry was observed (Goldstein \& Trueblood, 1967). Another important feature of $\mathrm{H}(\mathrm{CHIRAMT})$ is the positioning of hydrogen atoms $H(21)$ and $H(31)$ toward the tropone ring
hydrogens on $\mathrm{C}(12)$ and $\mathrm{C}(16)$. This steric locking of the conformation may be of significance in orienting the phenyl and methyl groups in the transition state responsible for the chiral induction observed in the catalytic enantioselective conjugate addition reaction.

This research was supported by a grant from the National Science Foundation.

References

Brunner, H., Knott, A., Benn, R. \& Rufinska, A. (1985). J. Organomet. Chem. 295, 211-221.
Goldstein, P. \& Trueblood, K. N. (1967). Acta Cryst. 23, 148-156.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 99, 149. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Molecular Structure Corporation (1988). TEXSAN. Structure Analysis Package, version 4.0. MSC, 3304 Longmire Drive, College Station, TX 77840, USA.
Villacorta, G. M., Rao, C. P. \& Lippard, S. J. (1988). J. Am. Chem. Soc. 110, 3175-3182.

Acta Cryst. (1989). C45, 1740-1743

Structures of (\pm)-trans-4-(2,3-Dimethoxyphenyl)- (I) and (+)-trans-4-(4-Methylphenyl)-2-hydroxy-2-methyl-3,4-dihydro-2H,5H-pyrano[3,2-c]-[1]benzopyran-5-one (II)

By Gerard Ruggiero, Oliver Platt Jr and Edward J. Valente
Department of Chemistry, Mississippi College, Clinton, MS 39058, USA
and Drake S. EgGleston
Department of Physical \& Structural Chemistry, Smith, Kline \& French Laboratories, King of Prussia, PA 19406, USA

(Received 21 July 1988; accepted 21 March 1989)

Abstract

Derivatives of 2-methyl-3,4-dihydro- $2 \mathrm{H}, 5 \mathrm{H}$ -pyrano[3,2-c][1]benzopyran-5-one. (I) Racemic trans-2-hydroxy-4-(2,3-dimethoxyphenyl), $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{6}$, $M_{r}=368 \cdot 40$, monoclinic, $C 2 / c, a=19.403$ (7), $b=$ $10 \cdot 636$ (8), $c=21.456$ (13) $\AA, \quad \beta=123.94$ (5) ${ }^{\circ}, \quad V=$ 3673.8 (85) $\AA^{3}, Z=8, D_{x}=1.33 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \alpha)$ $=0.71078 \AA, \mu=0.913 \mathrm{~cm}^{-1}, \quad F(000)=1552, T=$ 295 K , final $R=0.056$ for 2463 observations $[I \geq$ $2 \sigma(I)]$. Molecules are hydrogen bonded between hydroxyls and coumarin carbonyls, $\mathrm{O} \cdots \mathrm{O}$ $2 \cdot 812$ (3) \AA. The dihydropyran ring is in the d,ediplanar conformation. (II) Resolved ($2 R, 4 R$)-(+)-trans-2-hydroxy-4-(4-methylphenyl), $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{4}, M_{r}=$ 322.36, orthorhombic, $P 2_{1} 2_{1} 2_{1}, a=10 \cdot 578$ (4), $b=$

$10 \cdot 450$ (5), $c=14.803$ (7) $\AA, V=1636 \cdot 4$ (22) $\AA^{3}, Z=$ $4, D_{x}=1.31 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71078 \AA, \quad \mu=$ $0.540 \mathrm{~cm}^{-1}, F(000)=680, T=294 \mathrm{~K}$, final $R=0.044$ for 1580 observations [$I \geq 3 \sigma(I)$]. Molecules are hydrogen bonded along a screw axis between hydroxyls and coumarin carbonyls, $\mathrm{O} \cdots \mathrm{O}$ $2 \cdot 746$ (3) \AA. The dihydropyran ring is a nearly undistorted half-chair.

Introduction. Warfarin is a widely used anticoagulant agent. It and its derivatives crystallize as cyclic hemiketals containing a dihydropyran ring, which has been found to display a range of conformations. As part of a series of crystallographic studies on © 1989 International Union of Crystallography
warfarin analogs aimed at exploring the shapes of the embedded dihydropyran, this contribution describes the structures of two substituted 4-aryl derivatives of 2 -hydroxy-2-methyl- $2 \mathrm{H}, 5 \mathrm{H}$-pyrano-[3,2-c][1]benzopyran-5-one.

Experimental. The reaction between α, β-unsaturated ketones and 4-hydroxycoumarin in a modified Michael addition (Bush \& Trager, 1983) provides a simple route to warfarin derivatives. $2^{\prime}, 3^{\prime}$-Dimethoxywarfarin (I) was crystallized from acetone:water as colorless prisms, m.p. $467-468 \mathrm{~K}$. 4'-Methylwarfarin (II) was resolved through its quinidine salts (West, Preis, Schroeder \& Link, 1961), and the isomer from the more soluble diastereomeric salt was crystallized from acetone:water as colorless prisms, m.p. $477-478 \mathrm{~K}$; $[\alpha]_{D}^{25}=+137(5)^{\circ}, \quad 1.2 \mathrm{~g} 100 \mathrm{~mL}^{-1}(0.5 \mathrm{M} \mathrm{NaOH})$. Crystallographic specimens: (I) $0.28 \times 0.26 \times$ 0.21 mm , (II) $0.6 \times 0.35 \times 0.35 \mathrm{~mm}$ were chosen for data collection on a CAD-4 diffractometer. Unit-cell dimensions were determined from the setting angles of 25 reflections with $30 \leq 2 \theta \leq 35^{\circ}$. Intensities were recorded to $2 \theta=56^{\circ} ; h: 0-27, k: 0-14, l:-30$ to 24 for (I) and $h: 0-13, k: 0-13, l: 0-19$ for (II) using variable-speed $\theta-2 \theta$ scans. Three standard intensities monitored every 3 h of exposure time showed variations of $+2 \cdot 4(2 \cdot 7) \%$ and $+2 \cdot 2(12 \cdot 5) \%$, for (I) and (II) respectively, over the course of data collection; no correction for deterioration was made. The unique data [4498 (I), 2234 (II)] were corrected for coincidence and polarization. Symmetry-equivalent data for (I) were averaged [agreement on (I): $5 \cdot 8 \%$]. An extinction coefficient of the form proposed by Zachariasen (1963) was applied and refined for (II): g $=3.0(15) \times 10^{-7}$.

Structures were discovered with MULTAN (Germain, Main \& Woolfson, 1971). Non-H-atom positions and their $U_{\text {iso }}$'s were refined by full-matrix least squares (on F) minimizing $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$, then with their $U_{i j}$'s. Except for the hydroxyl H 's, H -atom positions were calculated and placed $1.0 \AA$ from their attached atom and assigned B 's approximately 1.3 times the $B_{\text {eq }}$'s of the adjacent carbon; they were not refined. Scattering factors were from International Tables for X-ray Crystallography (1974) except for H (Stewart, Davidson \& Simpson, 1965). Final agreement factors for (I): $R=0.056, w R=0.069$,

Table 1. Positions and $B_{e q}$'s for (I), with e.s.d.'s in parentheses

	x	y	z	$B_{\text {cq }}\left(\AA^{2}\right)$
Ol	0.9142 (1)	0.4073 (2)	0.26744 (9)	3.91 (5)
O2	0.8286 (1)	0.5671 (2)	$0 \cdot 21069$ (9)	4.03 (5)
O3	0.72066 (9)	$0 \cdot 1554$ (2)	$0 \cdot 16001$ (9)	$3 \cdot 26$ (4)
04	0.6316 (1)	$0 \cdot 2575$ (2)	0.18332 (9)	3.79 (5)
O5	0.59583 (9)	0.6391 (2)	0.03857 (9)	3.88 (5)
06	0.5953 (1)	0.7539 (2)	-0.0715 (1)	$4 \cdot 80$ (5)
C2	0.8355 (1)	0.4540 (3)	0.2154 (1)	3.09 (6)
C3	0.7695 (1)	$0 \cdot 3652$ (3)	0.1725 (1)	2.89 (6)
C4	0.7820 (1)	0.2424 (3)	$0 \cdot 1907$ (1)	2.81 (6)
C5	0.8815 (2)	0.0673 (3)	0.2669 (1)	3.88 (7)
C6	0.9622 (2)	$0 \cdot 0305$ (3)	0.3213 (2)	5.03 (9)
C7	1.0248 (2)	$0 \cdot 1197$ (4)	$0 \cdot 3549$ (2)	$5 \cdot 14$ (9)
C8	1.0092 (2)	0.2449 (3)	$0 \cdot 3367$ (2)	$4 \cdot 29$ (8)
C9	0.9276 (1)	$0 \cdot 2810$ (3)	$0 \cdot 2820$ (1)	$3 \cdot 32$ (6)
C10	0.8640 (1)	$0 \cdot 1943$ (3)	$0 \cdot 2467$ (1)	$3 \cdot 12$ (6)
C11	$0 \cdot 6862$ (1)	0.4174 (3)	$0 \cdot 1107$ (1)	3.01 (6)
Cl 2	0.6227 (1)	$0 \cdot 3102$ (3)	0.0724 (1)	3.57 (7)
C13	0.6361 (1)	0.2067 (3)	$0 \cdot 1261$ (1)	$3 \cdot 17$ (6)
C14	0.5794 (2)	$0 \cdot 0950$ (3)	0.0884 (2)	4.33 (8)
C15	$0 \cdot 6929$ (1)	0.4857 (3)	0.0511 (1)	2.98 (6)
C16	$0 \cdot 6465$ (1)	0.5935 (3)	0.0174 (1)	$3 \cdot 03$ (6)
C17	0.6466 (1)	0.6516 (3)	-0.0409 (1)	$3 \cdot 42$ (6)
C18	0.6953 (2)	$0 \cdot 6055$ (3)	-0.0635 (1)	$4 \cdot 12$ (7)
C19	0.7423 (1)	0.4970 (3)	-0.0294 (1)	$4 \cdot 26$ (7)
C20	0.7408 (1)	0.4378 (3)	0.0265 (1)	3.76 (7)
C21	0.6284 (2)	0.7493 (3)	0.0839 (2)	$5 \cdot 14$ (8)
C22	0.5897 (2)	0.8136 (4)	-0.1338(2)	$6 \cdot 5$ (1)
H3	0.639 (1)	$0 \cdot 199$ (3)	0.213 (1)	2.5 (7)*

* Starred atom was refined istropically. Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as: $\frac{4}{3}\left[a^{2} B(1,1)+b^{2} B(2,2)+c^{2} B(3,3)+\right.$ $a b(\cos \gamma) B(1,2)+a c(\cos \beta) B(1,3)+b c(\cos \alpha) B(2,3)]$.

Table 2. Positions and $B_{e q}$'s for (II), with e.s.d.'s in parentheses

	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
O1	$0.1646(2)$	$0.1321(2)$	$0.6989(2)$	$4.16(4)$
O2	$0.2560(2)$	$-0.0537(2)$	$0.7153(2)$	$4.86(5)$
O3	$0.4948(2)$	$0.3049(2)$	$0.6221(1)$	$3.54(4)$
O4	$0.6462(2)$	$0.2215(2)$	$0.7187(1)$	$4.20(4)$
C2	$0.2703(3)$	$0.0558(3)$	$0.6911(2)$	$3.57(6)$
C3	$0.3846(3)$	$0.1112(3)$	$0.6556(2)$	$3.12(5)$
C4	$0.3900(3)$	$0.2403(3)$	$0.6451(2)$	$2.96(5)$
C5	$0.2771(3)$	$0.4525(3)$	$0.6411(2)$	$4.07(6)$
C6	$0.1660(4)$	$0.5201(3)$	$0.6515(2)$	$4.75(7)$
C7	$0.0565(3)$	$0.4577(4)$	$0.6748(2)$	$4.81(7)$
C8	$0.0555(3)$	$0.3268(3)$	$0.6913(2)$	$4.45(7)$
C9	$0.1681(3)$	$0.2607(3)$	$0.6811(2)$	$3.52(6)$
C10	$0.2790(3)$	$0.3205(3)$	$0.6557(2)$	$3.10(5)$
C11	$0.4991(3)$	$0.0274(3)$	$0.6412(2)$	$3.29(5)$
C12	$0.5970(3)$	$0.1040(3)$	$0.5897(2)$	$3.77(6)$
C13	$0.6158(3)$	$0.2348(3)$	$0.6290(2)$	$3.46(6)$
C14	$0.7072(3)$	$0.3190(3)$	$0.5777(2)$	$4.69(7)$
C15	$0.4763(3)$	$-0.0965(3)$	$0.5912(2)$	$3.23(5)$
C16	$0.3954(3)$	$-0.1058(3)$	$0.5176(2)$	$4.71(7)$
C17	$0.3885(4)$	$-0.2173(4)$	$0.4670(2)$	$4.97(8)$
C18	$0.4599(3)$	$-0.3227(3)$	$0.4872(2)$	$3.96(6)$
C19	$0.5399(3)$	$-0.3129(3)$	$0.5614(2)$	$4.55(7)$
C20	$0.5477(3)$	$-0.2037(3)$	$0.6113(2)$	$4.02(6)$
C21	$0.4535(4)$	$-0.4422(4)$	$0.4315(3)$	$5.87(9)$
H4	$0.670(3)$	$0.292(3)$	$0.739(2)$	$3 \cdot 1(8)^{*}$

[^0]Table 3. Principal bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for (I)

$\mathrm{Ol}-\mathrm{C} 2$	1.385 (3)	C5-C10	1.401 (3)
$\mathrm{Ol}-\mathrm{C} 9$	1.371 (3)	C6-C7	1.384 (4)
O2-C2	1.208 (3)	C7-C8	1.374 (4)
O3-C4	1.353 (3)	C8-C9	1.399 (3)
O3-C13	1.478 (3)	C9-C10	1.380 (3)
O4-C13	$1 \cdot 389$ (3)	$\mathrm{Cl1-C12}$	1.537 (3)
O4-H3	0.84 (3)	$\mathrm{Cl1-C15}$	1.538 (3)
O5--C16	1.381 (3)	C12-C13	1.506 (3)
O5-C21	1.426 (3)	C13-C14	1.510 (3)
O6-C17	1.369 (3)	C15-C16	$1 \cdot 386$ (3)
O6-C22	1.428 (3)	C15-C20	$1 \cdot 395$ (3)
C2-C3	1.438 (3)	$\mathrm{C16-C17}$	1.396 (3)
C3-C4	1.346 (3)	C17-C18	1.372 (4)
C3-C11	1.513 (3)	C18-C19	$1 \cdot 398$ (4)
C4-C10	$1 \cdot 450$ (3)	$\mathrm{C} 19-\mathrm{C} 20$	$1 \cdot 371$ (3)
C5-C6	1.389 (4)		
C2-O1-C9	$121 \cdot 3$ (2)	$\mathrm{C5}-\mathrm{Cl0}-\mathrm{C} 9$	$119 \cdot 1$ (2)
$\mathrm{C} 4-\mathrm{O} 3-\mathrm{Cl} 3$	114.8 (2)	$\mathrm{C} 3-\mathrm{Cl1}-\mathrm{C} 12$	$109 \cdot 9$ (2)
C13-04-H3	108 (2)	$\mathrm{C} 3-\mathrm{Cl1}-\mathrm{C} 15$	111.0 (2)
C16-05-C21	112.8 (2)	C12-C11-C15	108.7 (2)
$\mathrm{C} 17-\mathrm{O}-\mathrm{C} 22$	117.2 (2)	$\mathrm{Cl1}-\mathrm{Cl} 2-\mathrm{Cl} 3$	$112 \cdot 9$ (2)
$\mathrm{O} 1-\mathrm{C} 2-02$	116.4 (2)	O3-C13--04	108.0 (2)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	117.9 (2)	O3-Cl3-Cl2	108.5 (2)
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	$125 \cdot 7$ (2)	O3-C13-Cl4	$104 \cdot 5$ (2)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	120.0 (2)	O4-C13-C12	108.8 (2)
C2-C3-Cl1	117.0 (2)	O4-C13-C14	$113 \cdot 1$ (2)
C4-C3-Cl1	122.9 (2)	C12-C13-C14	113.7 (2)
$\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 3$	123.7 (2)	C11-C15-Cl6	119.5 (2)
O3-C4-C10	115.0 (2)	C11-C15-C20	121.7 (2)
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{Cl} 0$	$121 \cdot 3$ (2)	C16-C15-C20	118.7 (2)
C6-C5-C10	$119 \cdot 8$ (2)	O5-C16-C15	119.6 (2)
C5-C6-C7	119.7 (3)	O5-C16-C17	119.7 (2)
C6-C7-C8	121.8 (2)	$\mathrm{C} 15-\mathrm{Cl} 16-\mathrm{Cl} 7$	$120 \cdot 6$ (2)
C7-C8-C9	118.1 (3)	O8-C17-C16	114.7 (2)
$\mathrm{Ol}-\mathrm{C} 9-\mathrm{C} 8$	116.2 (2)	O6-C17-C18	$125 \cdot 0$ (2)
$\mathrm{Ol}-\mathrm{C} 9-\mathrm{Cl} 10$	122.1 (2)	C16-C17-C18	$120 \cdot 2$ (2)
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{Cl} 0$	121.6 (2)	C17-C18-C19	119.2 (2)
C4-C10-C5	124.1 (2)	C18-C19-C20	$120 \cdot 6$ (2)
C4-C10-C9	116.8 (2)	$\mathrm{C} 15-\mathrm{C} 20-\mathrm{Cl} 9$	$120 \cdot 5$ (2)

Fig. 1. A drawing of (I) with 50% probability ellipsoids for the non-H atoms.

GOF $=1.54$, and for (II): $R=0.044, w R=0.060$, GOF $=1.68$ for $2463[I \geq 2 \sigma(I)]$ and $1580[I \geq$ $3 \sigma(I)]$ intensities, respectively. The weights were taken as $1 /\left(\sigma_{\mathrm{F}}\right)^{2}=4 F^{2} / \sigma\left(F^{2}\right)$ where $\sigma\left(F^{2}\right)=\left[\sigma(I)^{2}+\right.$ $\left.\left(0.05 F^{2}\right)^{2}\right]^{1 / 2}$, in the refinement of the 248 (I) and 222 (II) variables; scale factors 0.754 (I) and 0.147 (II); final maximum $\Delta / \sigma<0.02$ for each structure; maximum $|\Delta \rho|$ excursions less than $0.243 \mathrm{e} \AA^{-3}$. Final atom positions and equivalent isotropic vibrational

Table 4. Principal bond distances (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{O}-\mathrm{C} 2$	$1.379(3)$
$\mathrm{O} 1-\mathrm{C} 9$	$1.370(3)$
$\mathrm{O} 2-\mathrm{C} 2$	$1.209(3)$
$\mathrm{O} 3-\mathrm{C} 4$	$1.342(3)$
$\mathrm{O} 3-\mathrm{Cl3}$	$1.479(3)$
$\mathrm{O} 4-\mathrm{C13}$	$1.373(3)$
$\mathrm{O} 4-\mathrm{H} 4$	$0.83(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.439(3)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.360(3)$
$\mathrm{C} 3-\mathrm{Cl1}$	$1.510(3)$
$\mathrm{C} 4-\mathrm{Cl0}$	$1.450(3)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.380(4)$
$\mathrm{C} 5-\mathrm{Cl} 10$	$1.397(4)$
$\mathrm{C} 6-\mathrm{C} 7$	$1.373(4)$

$\mathrm{C} 2-\mathrm{Ol}-\mathrm{C} 9$	122.0 (2)
C4-O3-C13	116.6 (2)
$\mathrm{Cl} 3-\mathrm{O} 4-\mathrm{H} 4$	109 (2)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{O} 2$	114.9 (2)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	118.6 (2)
O2-C2-C3	126.5 (2)
C2-C3-C4	118.4 (2)
C2-C3-C11	119.5 (2)
C4-C3-C11	$121.7(2)$
O3-C4-C3	124.3 (2)
O3-C4-C10	113.9 (2)
C3-C4-C10	121.8 (2)
C6-C5-C10	120.0 (3)
C5-C6-C7	$120 \cdot 2$ (3)
C6-C7-C8	121.2 (3)
C7-C8-C9	117.7 (3)
$\mathrm{Ol}-\mathrm{C} 9-\mathrm{C} 8$	116.4 (2)
$\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 10$	121.2 (2)
C8-C9-C10	122.3 (2)
C4-C10-C5	124.4 (2)
C4-C10-C9	117.1 (2)

$\mathrm{C} 7-\mathrm{C} 8$	$1.390(4)$
$\mathrm{C} 8-\mathrm{C} 9$	$1.385(4)$
$\mathrm{C} 9-\mathrm{C} 10$	$1.381(3)$
$\mathrm{C} 11-\mathrm{C} 12$	$1.515(3)$
$\mathrm{C} 11-\mathrm{C} 15$	$1.512(3)$
$\mathrm{C} 12-\mathrm{C} 13$	$1.499(3)$
$\mathrm{C} 13-\mathrm{C} 14$	$1.512(4)$
$\mathrm{C} 15-\mathrm{C} 16$	$1.389(4)$
$\mathrm{C} 15-\mathrm{C} 20$	$1.383(3)$
$\mathrm{C} 16-\mathrm{C} 17$	$1.386(4)$
$\mathrm{C} 17-\mathrm{C} 18$	$1.370(4)$
$\mathrm{C} 18-\mathrm{C} 19$	$1.389(9)$
$\mathrm{C} 18-\mathrm{C} 21$	$1.498(4)$
$\mathrm{C} 19-\mathrm{C} 20$	$1.362(4)$

$\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 9$	118.5 (2)
C3-C11-C12	108.2 (2)
$\mathrm{C} 3-\mathrm{C} 11-\mathrm{Cl} 5$	116.0 (2)
C12-C11-C15	108.4 (2)
$\mathrm{Cl1}-\mathrm{Cl} 2-\mathrm{Cl} 3$	112.1 (2)
O3-C13-04	108.6 (2)
$\mathrm{O} 3-\mathrm{Cl} 3-\mathrm{Cl} 2$	108.0 (2)
$\mathrm{O} 3-\mathrm{C} 13-\mathrm{Cl} 4$	103.3 (2)
$\mathrm{O} 4-\mathrm{Cl} 3-\mathrm{Cl} 2$	108.3 (2)
O4-C13-C14	113.3 (2)
C12-C13-C14	114.9 (2)
C11-C15-C16	$122 \cdot 9$ (2)
C11-C15-C20	120.1 (2)
C16-C15-C20	116.6 (2)
C15-C16-C17	121.0 (3)
C16-C17-C18	121.9 (3)
C17-C18-C19	116.7 (3)
C17-C18-C21	121.7 (3)
C19-C18-C21	121.6 (3)
C18-C19-C20	121.8 (2)
C15-C20-C19	121.9 (2)

Fig. 2. A drawing of (II) with 50% probability ellipsoids for the non- H atoms.
factors for the non-H atoms are given in Tables 1 and 2.* All programs used were from the locally modified Enraf-Nonius (1979) SDP. Principal bond distances and angles are given in Tables 3 and 4.

[^1]Discussion. The crystal structure of racemic $2^{\prime}, 3^{\prime}$ dimethoxywarfarin (I) contains hydrogen-bonded columnar chains of molecules related by a twofold screw operation along the b axis, therefore linking molecules of like configuration. An hydroxyl group on one molecule donates a hydrogen bond to a coumarin carbonyl of a neighbor, $\mathrm{O} \cdots \mathrm{O}=2.812$ (3), $\mathrm{H} \cdots \mathrm{O}=1.97(3) \AA, \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ angle $173(2)^{\circ}$. The hydroxy group is disposed axially and the 4 -aryl substituent pseudoequatorially (trans) on a dihydropyran ring, which adopts a d,e-planar conformation with ring displacement asymmetry parameter $\Delta C_{2}=$ 0.0669 (12) (Nardelli, 1983). The 2^{\prime}-methoxy methyl group rotates out of the phenyl plane $\left(76^{\circ}\right)$ while the 3^{\prime}-methoxy methyl lies nearly in the phenyl plane $\left(4^{\circ}\right)$. The dihedral angle between the phenyl and coumarin planes is 78°. An ORTEP drawing (Johnson, 1976) of the molecule is given in Fig. 1.

The crystal structure of $(+)-4^{\prime}$-methylwarfarin (II) is pseudoisomorphous with that of (S)-(-)-warfarin (Valente, Trager \& Jensen, 1975). Hydrogen bonding occurs between screw related molecules along the b axis with donor hydroxyls and acceptor carbonyls, the $\mathrm{O} \cdots \mathrm{O}$ and $\mathrm{H} \cdots \mathrm{O}$ separations are 2.746 (3) and 1.95 (3) \AA, respectively, with an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ angle of 174 (3) ${ }^{\circ}$. As in (I), the hydroxyl group is disposed axially, the 4^{\prime}-methylphenyl group is pseudoequatorial and its plane is inclined at 70° with respect to the coumarin plane. The embedded dihydropyran ring is a nearly undistorted half-chair; ring displacement asymmetry parameter $\Delta C_{2}=0.0156$ (17). A drawing of the structure is given in Fig. 2; intraring torsion angles for (I) and (II) are given in Table 5.

Table 5. Torsion angles $\left({ }^{\circ}\right)$ in the dihydropyran rings
E.s.d.'s are at most about 0.4°; common configuration.

a					
a	b	c	d	e	f
-51.9	58.9	-34.2	2.0	5.4	20.9
-44.2	62.1	-47.5	16.4	0.4	14.2

This work was sponsored in part by a grant from the American Heart Association, No. MS-86-G-4.

References

Bush, E. \& Trager, W. F. (1983). J. Pharm. Sci. 72, 830-831.
Enraf-Nonius (1979). Structure Determination Package. EnrafNonius, Delft, The Netherlands.
Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A27, 368-376.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3176-3187.
Valente, E. J., Trager, W. F. \& Jensen, L. H. (1975). Acta Cryst. B31, 954-960.
West, B. D., Preis, S., Schroeder, C. \& Link, K. P. (1961). J. Am. Chem. Soc. 83, 2676-2679.
Zachariasen, W. H. (1963) Acta Cryst. 16, 1139-1144.

Acta Cryst. (1989). C45, 1743-1745

Structure of Tris(pentafluorophenyl)phosphine

By Anastas Karipides and Connie Miller Cosio
Department of Chemistry, Miami University, Oxford, Ohio 45056, USA

(Received 25 October 1988; accepted 15 March 1989)

Abstract

C}_{18} \mathrm{~F}_{15} \mathbf{P}, M_{r}=532 \cdot 1\), monoclinic, $P 2_{1} / c, a$ $=7.194$ (2),$\quad b=17.930$ (4), $\quad c=13.834$ (2) $\AA, \quad \beta=$ $94.29(2)^{\circ}, \quad V=1779 \AA^{3}, \quad Z=4, \quad D_{m}=2 \cdot 00, \quad D_{x}=$ $1.99 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71073 \AA, \mu=3.3 \mathrm{~cm}^{-1}$, $F(000)=1032, T \simeq 296 \mathrm{~K}$, final $R=0.055$ for 2352 unique observed reflections. The three planar $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups are twisted about the $\mathrm{C}-\mathrm{P}$ bonds to give extensive deviations from molecular C_{3} symmetry similar to those in the crystal structure of triphenylphosphine. The $\mathrm{P}-\mathrm{C}$ bond lengths and

$\mathrm{C}-\mathrm{P}-\mathrm{C}$ bond angles are $1.834(4), 1.832(4)$, $1 \cdot 824$ (4) \AA and $104 \cdot 4$ (2), $106 \cdot 0$ (2), $99 \cdot 6$ (1) ${ }^{\circ}$, respectively. There are two short C‥F non-bonded distances in the structure ($2 \cdot 99,2.79 \AA$).

Introduction. Although the structural characteristics of free triphenylphosphine as well as $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}$ fragments have been extensively studied (Daly, 1964; Brock \& Ibers, 1973; Bye, Schweizer \& Dunitz, 1982), there have been very few reported structural

[^0]: *Starred atom was refined istropically. Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as: $\frac{4}{3}\left[a^{2} B(1,1)+b^{2} B(2,2)+c^{2} B(3,3)+\right.$ $a b(\cos \gamma) B(1,2)+a c(\cos \beta) B(1,3)+b c(\cos \alpha) B(2,3)]$.

[^1]: * Lists of H -atom positions, anisotropic vibrational amplitudes and structure factors have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52058 (40 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

